中国AI大模型过剩,90%需要淘汰!

新知榜官方账号

2023-11-21 06:05:27

背景

OpenAI的开发者日活动后,GPTs模式引发了新一轮的AI热潮,开发者调用过分火爆,甚至导致OpenAI服务器一度宕机。随后,花式把玩GPTs的经验,以及围绕这种新形态的巨大争议开始涌现。中国的IT从业者、软件开发者与AI工程师也积极参与讨论,迎来了一场新的AI狂欢。但在这种氛围下,却有一种沉默显得像个显眼包。那就是绝大多数大模型公司,似乎都沉默了。为了模仿类GPT的大模型,中国AI圈用了一年时间,雨后春笋般打造了上百个大模型。但其中能够诞生明星应用,能够推动产品创新,甚至能够拥有规模化用户的似乎都寥寥无几。当OpenAI的飞轮效应显现,这些大模型公司就有种越是模仿差距越大的感觉。于是干脆不去追新的热点,埋头把眼前能做的先做完。记得今年年初的时候,社交网络和媒体都在讨论中国能否有大模型?当时我们说过,这其实是个伪命题,因为中国早就有大模型。而在ChatGPT爆火之后,中国AI遇到的问题一定不是大模型太少,而是大模型过剩。今天,这种问题开始浮现了出来。

问题

此刻中国AI行业最大的问题,就是大模型太多,而且还挺乱。摩肩接踵的大模型中国到底有多少AI大模型?经过一年的井喷式发展,这已经变成了一笔糊涂账。总之,中国此刻必然是全世界拥有大模型最多的国家,远远超过美国。但是,这一百多个大模型有人用过吗?有人对比、评测过吗?恐怕没有。因为除了几个头部大模型形成了用户规模外,其中大部分存在于开源社区,还有一部分只存在通稿里。

原因

首先是今年大模型赛道好,机会难得。虽然科技板块的VC市场非常低迷,但在其他互联网创投项目普遍失效,虚拟货币被严格限制的情况下,AI大模型成为今年近乎唯一的故事。因此即便热钱不多,但还是集中涌向了大模型创业。其次,与很多人设想的不同,大模型创业并没有真正意义上的高门槛。一旦以股权、期权等方式吸引到了合适的人才,大模型创业公司过多的费用支出。此外,还有一种“刷业绩”式的大模型,极大程度增加了大模型数量。这种一般是高校、科研机构相关团队,选报大模型方面课题更容易获得立项。其结项结果发布后,大模型数量就又增加了一个。或者是大型企业上级要求做大模型,于是IT部门会根据开源的模型框架搭建一个出来,即使效果不佳,落地困难,也要进行对内对外宣传。

问题原因

大模型数量说难道不能成为优势吗?我们靠数量出奇迹,说不定数量一多就能选出拔尖的来?这恐怕并不现实。因为从种种理由来看,今天庞大的大模型规模,都是不可能持续存在。大模型的优势就是一个顶一群,用一个模型代替一堆模型,结果反而出现了数量过剩的大模型,这与大模型初衷南辕北辙,并且浪费了海量的社会资源。大模型也是同样的道理,这是一个注定洗牌到存量很少的赛道。

未来

必须要淘汰今天超过90%的大模型。在这些底层软硬件基础之上,应该有大量创业公司、AI开发者去探索C端和B端的大模型落地。在大模型与行业结合的垂直领域,组成推广和复制行业大模型的产业生态;在主要的C端市场,比如大模型+办公、大模型+娱乐、大模型+信息获取方面,涌入成千上万家公司,形成互联网经济之后的AI经济奇迹。而从“百模大战”中能够留到那时的只有三种公司:具备核心技术创新的、形成平台型产业链的以及能够快速找到商业出口,形成正向资金循环的。

本页网址:https://www.xinzhibang.net/article_detail-20647.html

寻求报道,请 点击这里 微信扫码咨询

关键词

OpenAI GPTs AI热潮 大模型公司 中国AI圈 大模型过剩

分享至微信: 微信扫码阅读

相关工具

相关文章

相关快讯